偷拍免费视频-偷拍久久网-偷拍精品视频一区二区三区-偷拍福利视频-偷拍第一页-偷拍第1页

返回首頁(yè)

泰勒展開拉格朗日余項(xiàng)(ln(1+x)泰勒展開拉格朗日余項(xiàng))

來(lái)源:www.mqwn.com.cn???時(shí)間:2023-01-06 14:12???點(diǎn)擊:63??編輯:admin 手機(jī)版

1. ln(1+x)泰勒展開拉格朗日余項(xiàng)

拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無(wú)窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;

2. 1/(1-x)泰勒展開拉格朗日余項(xiàng)

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

3. ln(1+x)泰勒展開余項(xiàng)

泰勒展開是在定義域內(nèi)的某一點(diǎn)展開,lnx在x=0處無(wú)定義,它不能在x=0處展開

一般用ln(x+1)來(lái)套用麥克勞林公式

在x = 0 處無(wú)定義,因?yàn)楸緛?lái)ln 0就沒(méi)定義

泰勒展開是可以的,一般是對(duì)ln(x+1)進(jìn)行展開,有麥克勞林公式:

ln(x+1) = x - x^2/2 + x^3/3 ...+(-1)^(n-1)x^n/n+...

要算ln x的近似值用ln (x+1)公式就可以。

擴(kuò)展資料:

除了一元泰勒公式外,多元泰勒公式的應(yīng)用也非常廣泛,特別是在微分方程數(shù)值解和最優(yōu)化上有著很大的作用。

在高等數(shù)學(xué)的理論研究及應(yīng)用實(shí)踐中,泰勒公式有著十分重要的應(yīng)用,簡(jiǎn)單歸納如下

(1)應(yīng)用泰勒中值定理(泰勒公式)可以證明中值等式或不等式命題 。

(2)應(yīng)用泰勒公式可以證明區(qū)間上的函數(shù)等式或不等式。

(3)應(yīng)用泰勒公式可以進(jìn)行更加精密的近似計(jì)算

4. ln(x+1)的拉格朗日余項(xiàng)

設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即

L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。

5. lnx在x=2處的帶有拉格朗日型余項(xiàng)的泰勒公式

拉格朗日余項(xiàng)的泰勒公式:f'(x)=n+1。泰勒公式是一個(gè)用函數(shù)在某點(diǎn)的信息描述其附近取值的公式。如果函數(shù)滿足一定的條件,泰勒公式可以用函數(shù)在某一點(diǎn)的各階導(dǎo)數(shù)值做系數(shù)構(gòu)建一個(gè)多項(xiàng)式來(lái)近似表達(dá)這個(gè)函數(shù)。

函數(shù)(function)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個(gè)定義本質(zhì)是相同的,只是敘述概念的出發(fā)點(diǎn)不同,傳統(tǒng)定義是從運(yùn)動(dòng)變化的觀點(diǎn)出發(fā),而近代定義是從集合、映射的觀點(diǎn)出發(fā)。函數(shù)的近代定義是給定一個(gè)數(shù)集A,假設(shè)其中的元素為x,對(duì)A中的元素x施加對(duì)應(yīng)法則f,記作f(x),得到另一數(shù)集B,假設(shè)B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示,函數(shù)概念含有三個(gè)要素:定義域A、值域B和對(duì)應(yīng)法則f。其中核心是對(duì)應(yīng)法則f,它是函數(shù)關(guān)系的本質(zhì)特征。

6. lnx的拉格朗日余項(xiàng)的泰勒公式

泰勒展開是在定義域內(nèi)的某一點(diǎn)展開,lnx在x=0處無(wú)定義,它不能在x=0處展開

一般用ln(x+1)來(lái)套用麥克勞林公式

在x = 0 處無(wú)定義,因?yàn)楸緛?lái)ln 0就沒(méi)定義

泰勒展開是可以的,一般是對(duì)ln(x+1)進(jìn)行展開,有麥克勞林公式:

ln(x+1) = x - x^2/2 + x^3/3 ...+(-1)^(n-1)x^n/n+...

要算ln x的近似值用ln (x+1)公式就可以。

擴(kuò)展資料:

除了一元泰勒公式外,多元泰勒公式的應(yīng)用也非常廣泛,特別是在微分方程數(shù)值解和最優(yōu)化上有著很大的作用。

在高等數(shù)學(xué)的理論研究及應(yīng)用實(shí)踐中,泰勒公式有著十分重要的應(yīng)用,簡(jiǎn)單歸納如下

(1)應(yīng)用泰勒中值定理(泰勒公式)可以證明中值等式或不等式命題 。

(2)應(yīng)用泰勒公式可以證明區(qū)間上的函數(shù)等式或不等式。

(3)應(yīng)用泰勒公式可以進(jìn)行更加精密的近似計(jì)算。

7. ln1加x的拉格朗日余項(xiàng)推導(dǎo)

f(9)-f(4)=f′(x0)(9-4)

證明:由f(x)=√x,

∴f′(x)=1/2√x,

1/2√x=(√9-√4)/(9-4)

1/2√x=1/5

∴x0=25/4.

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 狠狠色综合久久久久尤物| 亚洲午夜免费视频| 国产无遮挡无码视频免费软件| 狠狠躁夜夜躁无码中文字幕| 手机在线观看视频你懂的| 曰欧一片内射vα在线影院| 少妇厨房愉情理伦片免费| 我被黑人巨大开嫩苞在线观看| 国产全肉乱妇杂乱视频| 欧美放荡的少妇| 天天添天天干| 国产熟妇与子伦hd| 海角国精产品一区一区三区糖心| 亚洲高清一区二区三区电影| 国产美女动态免费视频| 国产真人性做爰久久网站| 男人的天堂av网站| 每日更新在线观看av_手机| 亚洲精品岛国片在线观看| 99 久久99久久精品免观看| 亚洲精品无码专区在线| 内射国产内射夫妻免费频道| 亚洲国产日产无码精品| 国产美女主播在线| 少妇与黑人一二三区无码| 一区二区视频| 日本五月天婷久久网站| 亚洲蜜桃v妇女| 一本色道久久综合狠狠躁篇| 日本免费黄色网| 日本三级日本三级人妇三级四| 三年片在线视频中国| 人妻 日韩精品 中文字幕| 亚洲精品国产suv| 国产国产人免费人成免费视频| 国产色av| 妇乱子伦激情| 午夜伦理片在线观看| 日本欧美视频在线观看| 亚洲色欲色欲www在线丝| 国产精品亚洲一区二区无码|